Reactions of CO, H₂O, CO₂, and H₂ on the Clean and Precovered Fe(110) Surfaces – A DFT Investigation

Shaoli Liu,*,†,§ Yong-Wang Li,*,†,‡ Jianguo Wang,† and Haijun Jiao*,†,∥

†State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
‡National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
§University of Chinese Academy of Sciences, No. 19A Yuyuan Road, Beijing, 100049, P. R. China
∥Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany

ABSTRACT: The reactions of CO and H₂O on the clean Fe(110) surface as well as surfaces with 0.25 monolayer O, OH, and H precoverage have been computed on the basis of density functional theory (DFT). Under the considerations of the reductive nature of CO as reactant and H₂ as product as well as the oxidative nature of CO₂ and H₂O, we have studied the potential activity of metallic iron in the water-gas shift reaction. The clean surface, CO oxidation following the redox mechanism has a similar barrier as CO dissociation; however, CO dissociation is much more favorable thermodynamically. Furthermore, surfaces with 0.25 monolayer O, OH, and H precoverage promote CO hydrogenation, while they suppress CO oxidation and dissociation. On the surfaces with different CO and H₂O ratios, CO₂ dissociation is much more favorable kinetically and thermodynamically on all of these surfaces, and CO₂ hydrogenation should be favorable. Finally, metallic iron is not an appropriate catalyst for the water-gas shift reaction.

1. INTRODUCTION

Small molecules like CO, H₂, CO₂, and H₂O are very important and useful basic chemicals and have found wide applications in many practical industrial processes for the production of large-scale chemicals. Among all of these reactions, the water-gas shift (WGS) reaction [CO(g) + H₂O(g) = CO₂(g) + H₂(g); ΔH = −41.1 kJ/mol], which involves all of these four basic chemicals, has been widely used for H₂ production in the fertilizer industry and petroleum refinery for a variety of operations as well as in energy society.1,2 Because of its kinetic limitation and reversibility,1 the WGS reaction is thermodynamically favored at low temperature, while kinetically favored at high temperature, and therefore, the WGS reaction is typically carried out in two steps: high-temperature operation to convert CO and low-temperature operation to achieve lower CO content.1,3–5 Low-temperature WGS reaction plays an important role in many industrial processes such as methanol synthesis, methanol steam reforming, catalytic combustion, Fischer–Tropsch synthesis, and cleaning of H₂ stream from CO prior to feeding H₂ to low-temperature fuel cells.6

The WGS reaction can be catalyzed by metals and metal oxides. It is reported that iron oxide/chromium oxide catalysts could work only at high temperature,1 and copper-based catalysts could operate at low temperatures. Although the WGS reaction looks simple, its detailed mechanisms are still not fully understood on various surfaces. Experimentally, the mechanisms of the WGS reaction catalyzed by Co,7–9 Fe,7,8,10 Ni7,8,10,12 Ru,11,13 Rh,11,14 Pd,7,8,11–13,15,17 and Pt7,11,15,18–21 supported on metal oxides (Fe₂O₃, TiO₂, CeO₂, La₂O₃, Al₂O₃, MgO, MoS₂, and SiO₂), as well as metal sulfide and carbides, such as MoS₂,7,10 Mo₂C,7,15,18 have been extensively studied. There are many theoretical studies on the mechanisms of the WGS reaction catalyzed by metallic catalysts [Cu,24,25 Pt,5,6 Au,26–29 and Ag⁺] and metal/oxide catalysts [Cu/CeO₂,30 Au/CeO₂,30 Cu/ZnO,30 Au/ZnO,30 Cu/TiO₂,31 Au/TiO₂,31 Cu/ZrO₂,32 CeO₂/Cu,33 Au/CeO₂/TiO₂,34 Cu/CeO₂/TiO₂,34 and Pt/CeO₂/TiO₂].15

Two typical WGS reaction mechanisms have often been proposed, i.e., the regenerative redox mechanism7,11,14,16,17,20,35 and the intermediate-mediated mechanism.7,8,16,21,32 The redox mechanism features the elementary steps of H₂O adsorption (R1 and R2) and H₂O dissociation (R3, R4, and R5) as well as the formation and desorption of CO₂ (R6 and R7) and H₂ (R8). The reported rate-limiting steps in the mechanism are water activation and CO oxidation.7,11,14,16,17,20,35

Received: August 3, 2015
Revised: November 26, 2015
Published: November 30, 2015

DOI: 10.1021/acs.jpcc.5b07497

Supporting Information
The Journal of Physical Chemistry C

$\text{H}_2\text{O}(g) + * \rightarrow \text{H}_2\text{O}^*$ \hspace{1cm} (R1)

$\text{CO}(g) + * \rightarrow \text{CO}^*$ \hspace{1cm} (R2)

$\text{H}_2\text{O} + * \rightarrow \text{OH}^* + \text{H}^*$ \hspace{1cm} (R3)

$\text{OH}^* + * \rightarrow \text{O}^* + \text{H}^*$ \hspace{1cm} (R4)

$2\text{OH}^* + * \rightarrow \text{O}^* + \text{H}_2\text{O}^*$ \hspace{1cm} (R5)

$\text{CO} + \text{O}^* \rightarrow \text{CO}_2^* + *$ \hspace{1cm} (R6)

$\text{CO}_2^* \rightarrow \text{CO}_2 + *$ \hspace{1cm} (R7)

$2\text{H}^* \rightarrow \text{H}_2 + *$ \hspace{1cm} (R8)

The intermediate-mediated mechanism involves the carbon-containing intermediates (formate and carboxyl), which are formed via the coupling of CO and surface species (H and OH). In the carboxyl-intermediate (COOH) mechanism, the reaction involves COOH formation (R9) and dissociation (R10–R12) along with the steps in the redox mechanism.\(^{3,24}\)

\[
\begin{align*}
\text{CO} + \text{OH}^* & \rightarrow \text{COOH}^* + * \hspace{1cm} (R9) \\
\text{COOH}^* + * & \rightarrow \text{CO}_2^* + \text{H}^* \hspace{1cm} (R10) \\
\text{COOH}^* + \text{O}^* & \rightarrow \text{CO}_2^* + \text{OH}^* \hspace{1cm} (R11) \\
\text{COOH}^* + \text{OH}^* & \rightarrow \text{CO}_2^* + \text{H}_2\text{O}^* \hspace{1cm} (R12)
\end{align*}
\]

In the formate-intermediate (HCOO) mechanism, the reaction mechanism involves the direct (R13) and mediated (R14 and R15) dissociation of formic acid HCOO along with the steps in the redox mechanism.\(^{3,24}\) In fact, the formation of HCOO from CO and OH would involve several bond-breaking and bond-forming steps, which might involve large activation energy barriers. It is proposed that the formation of HCOO comes from the coupling of CO and surface H atom\(^{5,10}\) and such coupling reaction can be rationalized from the aspect of the frontier molecular orbitals of the CO and H atom. Previous studies reported that the HCOO is a spectator only and not involved in the WGS reaction mechanism.\(^{6,14,16,20,24}\)

\[
\begin{align*}
\text{HCOO}^* + * & \rightarrow \text{CO}_2^* + \text{H}^* \hspace{1cm} (R13) \\
\text{HCOO}^* + \text{O}^* & \rightarrow \text{CO}_2^* + \text{OH}^* \hspace{1cm} (R14) \\
\text{HCOO}^* + \text{OH}^* & \rightarrow \text{CO}_2^* + \text{H}_2\text{O}^* + * \hspace{1cm} (R15)
\end{align*}
\]

Iron oxide catalysts are called high-temperature shift catalysts, and there are many investigations about the WGS reaction on iron oxide catalysts.\(^{36,46}\) Generally, Fe$_3$O$_4$ is thought to be the active component in iron-based catalysts. However, Fe$_3$O$_4$ can sinter rapidly and lose its activity at high temperature.\(^{46,68}\) Recently, dopants such as Cr,\(^{2,1,38}\) Ce,\(^{47}\) Zn,\(^{48}\) La,\(^{49}\) and Cu\(^{46,50}\) were added to iron-based catalysts for improving the performance and efficiency. Despite wide industrial applications as well as experimental and theoretical investigations, the mechanisms of the WGS reaction catalyzed by Fe$_3$O$_4$ are still not well understood.

Considering the reductive nature of CO and H$_2$ as reactants, one might guess the components of the Fe-based catalysts. For example, do the catalysts only have Fe$_3$O$_4$ as the active component or can metallic iron formed from Fe$_3$O$_4$ reduction be the active component? Indeed, there is experimental evidence that metallic iron is present under the real FTS reaction conditions and also considered as active catalyst for the FTS reaction. For example, using Mössbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements, Niemantsverdriet et al.\(^{51}\) studied the conversion of metallic iron catalysts into carbides. Under the condition of $T < 513\text{ K}$, they found α-Fe as the main phase. In a widely accepted view of the iron catalyst, Doevendans showed that, at the start of the FTS reaction, the catalyst is predominantly in the form of metallic iron, which is converted to Fe$_3$O$_4$ and iron carbides; however, even after a long time-on-stream, there is still metallic iron present in the catalyst. Dictor et al.\(^{53}\) reported that the active phase in the FTS reaction is a mixture of χ- and ϵ-carbides and some metallic α-Fe. Eliason et al.\(^{54}\) reported the rate data for the FTS reaction on unsupported Fe and Fe/K catalysts and found that, on Fe catalysts, the FTS reaction mechanism can be expressed by a sequence of elementary steps, including H$_2$ dissociative adsorption, molecular and dissociative adsorption of CO, hydrogenation of atomic carbon to CH$_x$ species, polymerization of CH$_x$ species to hydrocarbons, and formation of CO$_2$ from CO and O. Lohitharn et al.\(^{55}\) studied the effect of transition-metal promoters for the Fe-based FTS catalysts and found that metallic iron has catalytic activity in CO hydrogenation, although it is lower. Ojeda et al.\(^{56}\) studied CO activation pathways and FTS mechanisms on the Fe(110) surface and found that the preferred CO dissociation pathway is H-assisted with CH formation through deoxygenation reaction.

On the basis of this experimental evidence, we carried out a systematic density functional theory (DFT) study to investigate the mechanism of the WGS reaction on the metallic Fe(110) surface. The reaction mechanisms, including redox and COOH- and COH- as well as the HCO-mediated steps, have been examined. We also considered the reaction pathways under different conditions, such as on the O$_2$, OH-, and H-precovered surfaces as well as different H$_2$O/CO ratios.

2. METHODS AND MODELS

2.1. Method. All calculations were performed with the plane-wave pseudopotential code in the Vienna Ab initio Simulation Package (VASP).\(^{37,58}\) The electron–ion interaction is described with the projector augmented wave (PAW)\(^{39,60}\) method. Exchange and correlation energies were described using the spin-polarized generalized gradient approximation and Perdew–Burke–Ernzerhof functional (GGA-PBE).\(^{51}\) Spin-polarized calculations were performed to account for the magnetic properties of iron. Transition-state structures were estimated by using the climbing image nudged elastic band method (CI-NEB).\(^{52}\) For each optimized stationary state, vibrational analysis was performed at the same level of theory to determine its character as either minimum or saddle point. The optimized lattice parameter was calculated using the body-centered cubic (bcc) unit cell, and its reciprocal space is sampled with a $15 \times 15 \times 15$ k-point grid generated automatically using the Monkhorst–Pack method.\(^{53}\) The optimized lattice constant is close to the experimental value (2.835 vs 2.866 Å\(^{64}\)). The calculated magnetic moment is close to the experimental value (2.226 vs 2.22 μ_B\(^{65}\)). Our previous studies showed that PBE is very well applicable in studying the adsorption, dissociation, and desorption of H$_2$O\(^{66,68}\) and H,\(^{69}\) and CO\(^{70,71}\) on different Fe surfaces, while dispersion correction for counting van der Waals interaction (PBE-D2) very often overestimates the adsorption strength of these systems.

2.2. Model. For the Fe(110) surface, a periodic slab with a vacuum region 15.0 Å in width was used to separate the repeating slabs. We used the same model as reported...
Fe$_2$O$_3$ under H$_2$ reduction atmosphere,72 and this is also the fact that the Fe(110) facet is the most exposed facet from surface. The choice of the Fe(110) facet as a model is based on the total energy of the slab with adsorbed molecules in its bridge (adsorbates were relaxed and the bottom two layers were fixed. The structure includes 64 Fe atoms. The top and side views and possible adsorption sites of the Fe(110) surface are shown in Figure 1. We considered the top (T), long-bridge (LB), short-bridge (SB), and 3-fold-hollow (3FH) sites.

![Figure 1](image.png)

Figure 1. Top (a) and side (b) views of the Fe(110) surface structures with possible adsorption sites: top (T), long-bridge (LB), short-bridge (SB), and 3-fold-hollow (3FH) sites.

bridge (SB), and 3-fold hollow (3FH) sites of the Fe(110) surface. The choice of the Fe(110) facet as a model is based on the fact that the Fe(110) facet is the most exposed facet from Fe$_2$O$_3$ under H$_2$ reduction atmosphere,72 and this is also confirmed by ab initio thermodynamics on the basis of surface free energies.70

The adsorption energy (E_{ads}) was calculated by using the expression defined as $E_{\text{ads}} = E_{\text{X/slab}} - E_{\text{ads}} - E_{\text{X}}$, where $E_{\text{X/slab}}$ is the total energy of the slab with adsorbed molecules in its equilibrium geometry, E_{ads} is the total energy of the clean surface, and E_{X} is the total energy of the free adsorbates in gas phase. Therefore, the more negative the E_{ads} the stronger the adsorption. The barrier (E_r) and the reaction energy (E_r) are calculated according to $E_r = E_{\text{TS}} - E_{\text{IS}}$ and $E_r = E_{\text{ES}} - E_{\text{IP}}$, where $E_{\text{IS}}, E_{\text{TS}}$, and E_{ES} are the energies of the corresponding initial state (IS), transition state (TS), and final state (FS), respectively. It is noted that the reported energies do not include the corrections of zero-point energies (E_{ZP}), since they have little effect on the surface reaction and mainly affect the gas molecules.69,71,73

3. RESULTS AND DISCUSSION

In this section, we described the WGS reaction including the redox and COOH$_2$, HCO$_2$, and COH-mediated mechanisms on different surfaces, such as on the OH$_2$, O$_2$, and H$_2$O/CO$_2$ ratios. We computed all possible parallel and competitive routes, and the results have been summarized in potential energy surface (PES). We considered several possible and logical adsorbed geometries and searched several reaction paths. In this work, the reactions of CO and H$_2$O on all the considered surfaces are the most favorable paths among these possibilities.

3.1. Adsorption of CO, CO$_2$, HCO, COH, COOH, and HCOO. In our previous study,87 the adsorption of H, O, OH, and H$_2$O on the clean Fe(110) surface has been described in detail. Here, we only considered the adsorption of the reactants, intermediates, and products involved in the WGS reaction on the basis of their most stable positions (Figure 2). The adsorption energies and the selected bond lengths of the corresponding structures are listed in Table 1.

![Figure 2](image.png)

Figure 2. Adsorption configurations and energy of CO, CO$_2$, HCO, COH, COOH, and HCOO on Fe(110).

3.1.1. CO and CO$_2$ Adsorption. As found in previous studies,84–77 the most stable CO adsorption configuration is at the T site with the C atom binding to the iron surface atom, and the distances of Fe–C and C–O are 1.769 and 1.174 Å, respectively. Our calculated adsorption energy ($−1.99$ eV) is close to the available data with PW91 (−1.95 eV)76 and PBE (−1.8875,77 and −2.00 eV).78 We also calculated the stable configurations at the LB (−1.94 eV) and 3FH (−1.94 eV) sites, and the adsorption energies are very close to that at the T site, indicating the possibility and flexibility of CO adsorption.

In the most stable CO$_2$ adsorption configuration, CO$_2$ adsorbs across the LB site over two 3FH sites in a bent way, where the C atom is at one 3FH site with the Fe–C distances of 1.972, 2.260, and 2.261 Å, and one O atom is at the neighboring 3FH site with the Fe–O distances of 2.037, 2.211, and 2.212 Å, while the second O atom is pointing away from the surface with the OCO angle of 125.8°. The computed C–O bond lengths are 1.232 and 1.369 Å. The computed adsorption energy is −0.54 eV, in agreement with the previous study (−0.56 eV/PBE).78

3.1.2. HCO and COH Adsorption. In the most stable HCO adsorption configuration, HCO adsorbs across the LB site over two 3FH sites in a bent way, where the C atom is at one 3FH site with the Fe–C distances of 1.952, 2.105, and 2.176 Å, and the O atom is at the neighboring 3FH site with the Fe–O distances of 2.020, 2.131, and 2.267 Å, while the H atom is pointing away from the surface with the HCO angle of 125.8°. The computed adsorption energy is −3.09 eV, and the computed C–O and C–H distances are 1.353 and 1.107 Å, respectively.

In the most stable COH adsorption configuration, COH adsorbs across the LB site with the Fe–C distances of 1.894, 1.896, 2.210, and 2.246 Å. The C–O bond sites are perpendicular to the iron surface, the C–O distance is 1.358 Å, and the O–H bond is nearly parallel to the iron surface. The computed adsorption energy is −4.85 eV. In the gas phase, the HCO radical is more stable than the COH radical by 1.83 eV, and this is governed by the 5σ lone pair of the carbon atom in the highest occupied orbital of the CO molecule. On the
Fe(110) surface, the adsorbed HCO species is more stable than the adsorbed COH species by only 0.07 eV, indicating that, on the surface, from CO hydrogenation, both HCO and COH could be possible thermodynamically.

3.1.3. COOH and HCOO Adsorption

For COOH, there exist two stable adsorption configurations on the basis of the bent CO2. In the first one, COOH has a trans-conformation with the O−H bond pointing toward to the surface, the C−O distances are 1.334 and 1.355 Å, and the adsorption energy is −2.81 eV. In the second one, COOH has a cis-conformation with the O−H bond pointing away from the surface, the C−O distances are 1.342 and 1.355 Å, and the adsorption energy is −2.88 eV. In both COOH configurations, the CO2 unit has the same adsorption configuration and similar structural parameters as only bent CO2 on the surface (Table 1).

For HCOO, there are also two adsorption configurations, a tilted one and a perpendicular one. In the tilted one, both O atoms are located at the SB sites with the Fe−O distances of 2.009, 2.037, 2.024, and 2.041 Å, and the C−H group is tilted over another SB site with the Fe−C distances of 2.158 and 2.411 Å. The adsorption energy is −3.44 eV. In the perpendicular one, HCOO bridges the LB site with the Fe−O distances of 1.977 and 1.980 Å, and the adsorption energy is −3.58 eV. In the gas phase, the COOH radical is more stable than the HCOOH radical by 0.39 eV. Adsorbed on the Fe(110) surface, the tilted HCOO is more stable than the trans-COOH by 0.29 eV.

3.2. WGS on the Clean Fe(110) Surface

First, we have considered the WGS reaction on the basis of the neighboring adsorbed H2O + CO on the Fe(110) surface in four competitive pathways. The optimized structures of the IS, TS, and FS are shown in Figures S1−S4, and the structural parameters are listed in Table S1. The reaction barriers, the reaction energies, and the structural parameters of the TS are shown in Table S2. The total reaction PES is shown in Figure 3.

For the neighboring adsorbed H2O + CO, the adsorption energy is −2.33 eV, which is close to the sum of individual H2O and CO adsorptions (−2.37 eV). In coadsorbed H2O + CO, both H2O and CO are at the top sites and the structural parameters are similar as their individual adsorptions. Within all pathways, the first step is H2O dissociation and this is because H2O dissociative adsorption is more favorable kinetically (0.68 vs 1.51 eV) and thermodynamically (−1.28 vs −0.46 eV) than CO direct dissociation on the clean surface.75 It is also necessary to create surface OH and O to initiate the WGS reaction. In the transition state (TS1), the breaking O−H distance is 1.420 Å. In the final state, the adsorbed OH and H are at the LB and 3FH sites, respectively. The energy barrier is 0.70 eV and the reaction is exothermic by 1.24 eV, very similar as that on the clean surface.

3.2.1. Path 1

Since the redox mechanism [CO + OH + H → CO + O + 2H → CO2 + 2H] needs a surface O atom, we computed surface OH dissociation. In the transition state (TS2), the breaking O−H distance is 1.277 Å. In the final state (CO + O + 2H), the O and H atoms are located at the 3FH sites, and the CO molecule still adsorbs at the top site with the Fe−C distance of 1.771 Å. The computed dissociation barrier is 0.95 eV, and the dissociation is exothermic by 0.55 eV. This is very similar as that on the clean surface (0.90 and −0.57 eV).67 In addition, it is noted that OH dissociation is more favorable kinetically and thermodynamically than CO dissociation and the surface species should be the coadsorbed CO + O + 2H.

Table 1. Adsorption Energies (E_{ads}, eV) and Relevant Distances (d, Å) of CO, CO2, HCO, COH, COOH, and HCOO on Fe(110)

<table>
<thead>
<tr>
<th>Species</th>
<th>E_{ads}</th>
<th>d_{Fe−C}</th>
<th>d_{Fe−O}</th>
<th>d_{C−O}</th>
<th>d_{C−H}</th>
<th>d_{O−H}</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>−1.99</td>
<td>1.769</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>−0.54</td>
<td>1.972</td>
<td>2.260</td>
<td>2.261</td>
<td>2.037; 2.211; 2.212</td>
<td>1.232; 1.369</td>
</tr>
<tr>
<td>HCO</td>
<td>−3.09</td>
<td>1.932</td>
<td>2.105</td>
<td>2.176</td>
<td>2.020; 2.131; 2.267</td>
<td>1.353</td>
</tr>
<tr>
<td>COH</td>
<td>−4.85</td>
<td>1.894</td>
<td>1.896</td>
<td>2.210; 2.246</td>
<td>1.358</td>
<td></td>
</tr>
<tr>
<td>trans-COOH</td>
<td>−2.88</td>
<td>1.936</td>
<td>2.236</td>
<td>2.274</td>
<td>2.239; 2.135; 2.212</td>
<td>1.334; 1.355</td>
</tr>
<tr>
<td>cis-COOH</td>
<td>−2.81</td>
<td>1.943</td>
<td>2.247</td>
<td>2.267</td>
<td>2.090; 2.211; 2.224</td>
<td>1.342; 1.353</td>
</tr>
<tr>
<td>tilted-HCOO</td>
<td>−3.58</td>
<td>2.158</td>
<td>2.411</td>
<td></td>
<td>2.009; 2.037; 2.024; 2.041</td>
<td>1.344; 1.345</td>
</tr>
<tr>
<td>perp-HCOO</td>
<td>−3.44</td>
<td></td>
<td></td>
<td></td>
<td>1.977; 1.980</td>
<td>1.272; 1.273</td>
</tr>
</tbody>
</table>

Figure 3. Potential energy surfaces of the reactions of CO and H2O on the clean Fe(110) surface.
Table 2. Activation Barriers (E_a, eV) and Reaction Energies (E_r, eV) of the Related Elementary Reactions (the Activation Barriers of the Reverse Reaction, E_a(reverse), Are Given in Square Brackets, and Reverse Reaction Energy Is Equal to −E_r)

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Fe(110)</th>
<th>40/Fe(110)</th>
<th>4OH/Fe(110)</th>
<th>4H/Fe(110)</th>
<th>H_2O/Fe(110)</th>
<th>CO/Fe(110)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO + O → CO_2</td>
<td>1.61 [0.06]</td>
<td>1.55</td>
<td>1.65 [0.77]</td>
<td>0.88</td>
<td>2.11 [0.84]</td>
<td>1.27</td>
</tr>
<tr>
<td>CO + H → HCO</td>
<td>1.75 [0.44]</td>
<td>1.31</td>
<td>0.67 [0.04]</td>
<td>0.63</td>
<td>1.83 [0.73]</td>
<td>1.10</td>
</tr>
<tr>
<td>CO + OH → COOH</td>
<td>1.80 [0.35]</td>
<td>1.45</td>
<td>1.26 [0.27]</td>
<td>0.99</td>
<td>2.04 [0.57]</td>
<td>1.47</td>
</tr>
<tr>
<td>CO → C + O</td>
<td>1.76 [0.32]</td>
<td>1.44</td>
<td>1.37<sup>a</sup> [0.24<sup>a</sup>]</td>
<td>1.13<sup>b</sup></td>
<td>1.95 [0.74]</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.69 [0.37]</td>
<td>0.41</td>
<td>1.28<sup>a</sup> [0.66<sup>a</sup>]</td>
<td>0.62<sup>b</sup></td>
<td>2.14 [0.95]</td>
<td>1.19</td>
</tr>
</tbody>
</table>

^aFrom the precovered H. ^bFrom H after H_2O dissociation.

On the basis of the precovered CO + O + 2H, we computed CO_2 formation [CO + O + 2H → CO_2 + 2H]. In the transition state (TS3), the forming C−O distance is 1.657 Å. The computed barrier is 1.61 eV, and CO_2 formation is endothermic by 1.55 eV. This reveals that CO_2 formation is neither kinetically nor thermodynamically favorable, while very easy CO dissociation has been reported. Therefore, the redox mechanism seems very difficult on the Fe(110) surface. In addition, we computed CO direct dissociation from the coadsorbed CO + O + 2H, and it is found that CO direct dissociation has a barrier of 1.58 eV (TS4) and is exothermic by 0.41 eV, very similar as that on the clean surface (1.51 and −0.46 eV, respectively). Compared with CO formation, CO dissociation is more favorable thermodynamically by 1.96 eV, and this is because of the very low CO_2 adsorption energy.

3.2.2. Path 2. On the basis of the coadsorbed CO + OH + H, we computed the COOH-mediated reaction [CO + OH + H → COOH + H + CO_2 + 2H]. For COOH formation from CO and OH coupling, the reaction has a barrier of 2.11 eV and is endothermic by 1.27 eV. In the transition state (TS5), the forming C−O distance is 1.678 Å. It shows that COOH formation is also very difficult on the Fe(110) surface. Compared with the dissociation of OH and CO, COOH formation is neither kinetically nor thermodynamically favorable.

Nevertheless, we further computed COOH + H dissociation into CO_2 + 2H with the two H atoms adsorbed at the 3FH sites. In the transition state (TS6), the breaking O−H distance is 1.338 Å. The computed barrier is 0.95 eV, and this step is exothermic by 0.27 eV. Alternatively, we also computed COOOH dissociation into COO + O. In the transition state (TS7), the breaking C−O distance is 1.775 Å. The computed barrier is 0.60 eV, and this step is exothermic by 0.98 eV. This indicates that COOH dissociation into COO + O is more favorable kinetically and thermodynamically than into CO_2 + H. Since COOOH formation is very difficult, the COOH route [CO + OH + H → COOH + H + CO_2 + 2H] should also be unlikely.

3.2.3. Path 3. The third path is the HCO-mediated reaction from the coadsorbed CO + OH + H. In the transition state of HCO formation (TS8), the forming C−O distance is 1.406 Å, and the energy barrier is 1.65 eV. In the final state, HCO and OH are located at their most stable sites with the Fe−C distances of 1.941, 2.111, and 2.147 Å, and the C−O distance is 1.353 Å. This step is endothermic by 0.88 eV. It is noted that HCO formation is not competitive with OH dissociation kinetically and thermodynamically.

Subsequently, the formed HCO can dissociate into HC and O. In the transition state TS9, the breaking C−O distance is 1.821 Å, and this step has an energy barrier of 0.55 eV and is exothermic by 1.07 eV, therefore, favorable kinetically and thermodynamically. Alternatively, the coadsorbed HCO and OH can react to obtain the HCOOH. In the transition state TS10, the forming C−O distance is 1.835 Å. However, HCOOH formation is neither kinetically (1.56 eV) nor thermodynamically (1.25 eV) favorable. It is interesting to note that HCOOH dissociation (the back reaction) is very feasible (0.31 and −1.25 eV).

3.2.4. Path 4. The fourth path is the COH-mediated reaction from the coadsorbed CO + OH + H. In the transition state of COH formation (TS11), the forming O−H distance is 1.298 Å, and the effective energy barrier is 2.06 eV. In the final state, the COH and OH are located at their most stable sites with the Fe−C distances of 1.868, 1.886, 2.192, and 2.322 Å, and the C−O distance is 1.362 Å. This step is endothermic by 0.90 eV from the stable CO + OH + H. It is not favored both kinetically and thermodynamically. We also do not consider the following steps in this route because of the high barrier and endothermic reaction.

The PES in Figure 3 shows clearly that the most favorable reaction path follows the dissociation of H_2O and CO_2 and the final surface species is the coadsorbed C + 2O + 2H. With respect to the coadsorbed CO + H_2O, all stationary points of the most favorable reaction path are more stable and the whole dissociation is exothermic by 2.20 eV. Although the redox reaction mechanism [CO + O + 2H → CO_2 + 2H] has a similar barrier as CO dissociation (1.61 vs 1.58 eV), it is much less exothermic by 1.96 eV than CO dissociation.

The PES in Figure 3 and the data listed in Table 2 also show that CO_2 dissociation [CO_2 → CO + O] is much more favorable kinetically (nearly barrier-less) and thermodynamically (−1.55 eV); the formed CO can either dissociate [CO → C + O] or be hydrogenated [CO + H → HCO]; and both C and HCO can be further transformed to hydrocarbons.

Since CO direct oxidation and the formation of COOH and COH are not competitive with the dissociative adsorption of H_2O and CO kinetically and thermodynamically, in the following section, we focused on the effect of surface precoverage on CO oxidation as well as the formation of COOH and HCO.

3.3. On 0.25 ML O-Precovered Fe(110) Surface. From surface oxidation via H_2O dissociative adsorption, surface O has saturated coverage of approximately 0.4 ML. Since CO dissociation is more favorable than CO_2 formation from CO oxidation thermodynamically, we became interested in the effect of surface oxygen precoverage on the WGS reaction and considered the reaction of CO and H_2O on the most stable 0.25 ML O-precovered Fe(110) surface through the redox and COOH- and HCO-mediated reactions on the basis of 4O...
CO + H2O coadsorption. The optimized structures of the IS, TS, and FS are shown in Figure S5, and the structural parameters are listed in Table S3. The reaction barriers, the reaction energies, and the structural parameters of the TS are shown in Table S4. The total reaction PES is shown in Figure 4.

The coadsorption energy of 4O + CO + H2O is −2.19 eV, which is lower than that (−2.33 eV) on the clean surface. On the coadsorbed 4O + CO + H2O surface, the adsorbed configurations of H2O and CO are different from those on the clean surface due to the O precover. Although the H2O molecule still adsorbs at the top site with the Fe–O distance of 2.135 Å, due to the presence of the H-bonding, the H2O molecule plane has a dihedral angle of 59.1° with the iron surface (vs 14.4° on the clean surface). In addition, CO adsorbs at the 3FH site with the Fe–C distances of 1.824, 2.159, and 2.198 Å, which are different from the top adsorption configuration on the clean surface. The H-bonding distances between H2O and O as well as between H2O and CO are 2.215 and 1.864 Å, respectively.

Although H2O dissociative adsorption is more favorable, we computed CO direct oxidation to CO2 [CO + O → CO2] on the basis of the coadsorbed CO + H2O + 4O at first. In the transition state TS12, the forming C–O distance is 1.768 Å. The energy barrier is 1.75 eV, and the reaction is endothermic by 1.31 eV. This reaction is even more difficult kinetically and thermodynamically than that on the clean surface (1.61 and 0.84 eV), indicating that precovered surface O atoms do not promote CO direct oxidation; instead, precovered surface O atoms might promote CO2 dissociation. In the final state (3O + CO2 + H2O), there is H-bonding between H2O and CO2 with the distance of 1.647 Å.

In addition, H2O and O can react to form 2OH [H2O + O → 2OH]. In the transition state TS13, the breaking and forming O–H distances are 1.313 and 1.129 Å, respectively. This reaction has an energy barrier of 0.52 eV and is endothermic by 0.06 eV. In the final state (3O + CO + 2OH), the two OH species adsorb at the 3FH sites with the adsorption energy of −2.13 eV.

In the HCO-mediated mechanism [3O + CO + 2OH → 3O + CO + OH + O + H → 40 + HCO + OH], the next step is OH dissociation into O and H atoms. In the transition state TS14, the breaking O–H distance is 1.336 Å. OH dissociation has a barrier of 1.08 eV and is exothermic by 0.30 eV. After dissociation, the formed O and H atoms adsorb at the 3FH site. In the transition state of CO hydrogenation (TS15), the forming C–H distance is 1.476 Å. CO hydrogenation has a barrier of 0.67 eV and is endothermic by 0.63 eV. Compared with HCO formation on the clean surface (1.65 and 0.88 eV), CO hydrogenation needs a lower barrier and becomes less endothermic.

In the COOH-mediated mechanism [3O + CO + 2OH → 3O + COOH + OH], the next step is the coupling of OH and CO to form COOH starting from the coadsorbed CO + 2OH + 3O. In the transition state TS16, the forming C–O distance is 1.752 Å. The barrier is 1.83 eV, and the reaction is endothermic by 1.10 eV. Compared with that on the clean surface, COOH formation on the O-precovered surface needs a lower barrier and is less endothermic. However, this step is still unfavorable kinetically and thermodynamically.

In addition, we calculated CO direct dissociation into C and O. In TS17, the breaking C–O distance is 1.723 Å. The dissociation has a barrier of 2.25 eV and is endothermic by 0.13 eV. Compared with CO dissociation on the clean surface, this reaction is more unfavorable.

The PES in Figure 4 shows clearly that, on the 0.25 ML O (4O) precovered surface, the most favorable route is HCO formation following 4O + CO + H2O → 3O + CO + 2OH → 3O + CO + OH + O + H → 40 + HCO + OH. With respect to the coadsorbed 4O + CO + H2O, OH dissociation has the highest barrier (1.14 eV) and HCO formation is endothermic by 0.39 eV. In contrast, CO direct oxidation and COOH formation need much higher barriers (1.75 and 1.89 eV), indicating that precovered surface O atoms do not also much more endothermic (1.31 and 1.16 eV, respectively).

The PES in Figure 4 shows that CO2 dissociation [CO2 + 3O → CO + O] is much favorable kinetically (0.44 eV) and thermodynamically (−1.31 eV), and the formed CO can be hydrogenated [CO + H2 → HCO]. The formed HCO can be further transformed to hydrocarbons.

3.4. On 0.25 ML OH-PrecOvEred Fe(110) Surface. Apart from surface O atoms, surface OH is another principal species, which can be easily formed from either H2O dissociative adsorption or the reaction with surface O via a very low barrier.24 Therefore, we investigated the influence of precovered OH species on the WGS reaction on the basis of the 0.25 ML OH-precovered Fe(110) surface. The optimized structures of the stationary points of IS, TS, and FS are shown in Figure S6, and the structural parameters are listed in Table S5. The reaction barriers, the reaction energies, and the structural
The parameters of the TS are shown in Table S6. The total reaction PES is shown in Figure 5.

On the 0.25 ML OH-precovered Fe(110) surface, the coadsorption energy of CO + H₂O is −2.39 eV, which is close to that (−2.33 eV) on the clean surface. In the most stable adsorption configuration, CO adsorbs at the 3FH site with the Fe−C distances of 1.916, 1.922, and 2.300 Å, and this is different from that on the clean surface at the top site. In addition, H₂O adsorption also differs strongly from that on the clean surface at the top site. The adsorbed H₂O molecule interacts with the surface OH group and CO via the H-bonding between H₂O and OH (1.644 Å) as well as between H₂O and CO (1.786 Å).

Although H₂O dissociative adsorption is more favorable, we computed COOH formation from CO and OH coupling at first. In the transition state of COOH formation (TS18), the forming C−O distance is 1.594 Å. COOH formation has a barrier of 2.04 eV and is endothermic by 1.47 eV. In the final state (3OH + COOH + H₂O), the H-bonding between H₂O and OH as well as between H₂O and CO is 1.644 Å as well as between H₂O and CO (1.786 Å).

Although H₂O dissociative adsorption is more favorable, we computed COOH formation from CO and OH coupling at first. In the transition state of COOH formation (TS18), the forming C−O distance is 1.594 Å. COOH formation has a barrier of 2.04 eV and is endothermic by 1.47 eV. In the final state (3OH + COOH + H₂O), the H-bonding between H₂O and OH as well as between H₂O and CO is 1.644 Å as well as between H₂O and CO (1.786 Å).

In contrast, the adsorbed CO and H can form HCO starting from the formation of 3OH + CO + H₂O + O + H. In the transition state (TS21), the forming C−H distance is 1.635 Å. This step needs an effective energy barrier of 1.80 eV and is endothermic by 1.45 eV.

In order to compare with the route on the clean surface, we calculated CO direct dissociation into C and O. In the transition state TS22, the breaking C−O distance is 1.827 Å. The dissociated barrier is 2.47 eV, and this reaction is endothermic by 0.52 eV. Compared with CO dissociation on the clean surface (1.51 and −0.46 eV, respectively), this reaction becomes less favorable kinetically and thermodynamically.

The PES in Figure 5 shows clearly that, on the 0.25 ML OH-precovered surface, the most favorable reaction is HCO formation following the 4OH + CO + H₂O → 3OH + CO + H₂O + O + H → 3OH + HCO + H₂O + O route, while CO direct oxidation and COOH formation are neither kinetically nor thermodynamically competitive and favorable. Considering...
the back reactions reveals that CO₂ dissociation [CO₂ → CO + O] is much favorable kinetically (0.35 eV) and thermodynamically (~1.45 eV), and the formed CO can be hydrogenated [CO + H → HCO].

3.5. WGS Reaction on 0.25 ML H-Precovered Surface.

Apart from the surface O and OH species, H is another inevitable surface species or the product of the WGS reaction. Therefore, we considered the reaction of CO and H₂O on the most stable 0.25 ML H-precovered Fe(110) surface. The optimized structures of the stationary points of IS, TS, and FS are shown in Figure S7, and the structural parameters are listed in Table S8. The reaction barriers, the reaction energies, and the structural parameters of the TS are shown in Table S9. The total reaction potential energy surfaces are shown in Figure 6.

The coadsorption energy of CO and H₂O is −2.48 eV, which is higher than that (~2.33 eV) on the clean surface. On the basis of the coadsorbed CO + H₂O + 4H, the H₂O molecule adsorbs at the top site with the Fe–O distance of 2.146 Å, and CO adsorbs at the 3FH site with the Fe–C distances of 1.922, 2.001, and 2.142 Å. There exists H-bonding between CO and H₂O (1.854 Å).

Although H₂O dissociative adsorption is more favorable, we computed HCO formation from CO hydrogenation at first. In the transition state TS23, the forming C–O distance is 1.376 Å. The energy barrier is 1.37 eV, and the reaction is endothermic by 1.13 eV. In addition, the adsorbed H₂O can dissociate into OH and H. In the transition state TS24, the breaking O–H distance is 1.442 Å. The energy barrier is 1.11 eV, and this reaction is exothermic by 0.66 eV. Therefore, H₂O dissociative adsorption is more favorable kinetically and thermodynamically. Following the H₂O dissociative adsorption, the subsequent CO hydrogenation has a barrier of 1.28 eV and is endothermic by 0.62 eV. In the transition state (TS25), the forming C–H distance is 1.342 Å. This reaction is easier to occur than that on the clean surface; i.e., the precovered H can promote CO hydrogenation.

Starting from the coadsorbed 4H + CO + OH + H, the subsequent OH dissociation needs a barrier of 1.00 eV and is exothermic by 0.41 eV. In the transition state TS26, the breaking O–H distance is 1.290 Å. For CO oxidation by surface O, the forming C–O distance in the transition state (TS27) is 1.698 Å. This reaction needs a barrier of 1.76 eV and is endothermic by 1.44 eV. Compared with CO oxidation on the clean surface, this reaction needs a higher barrier. We also calculated CO dissociation into C and O atoms. In the transition state (TS28), the breaking C–O distance is 1.810 Å. This reaction needs a barrier of 2.33 eV and is exothermic by 0.37 eV. Starting from the coadsorbed 4H + CO + OH + H, COOH formation has a barrier of 1.95 eV and is endothermic by 1.21 eV. In the transition state TS29, the forming C–O distance is 1.674 Å. This process is easier to occur than that on the clean surface (1.95 vs 2.11 eV).

The PES in Figure 6 shows clearly that, on the surface with coadsorbed CO + H₂O + 4H, the first step is H₂O dissociative adsorption, followed by HCO formation [4H + CO + H₂O → 4H + CO + OH + H → 4H + HCO + OH], while the formation of CO₂ and COOH is not favorable kinetically and thermodynamically. From the coadsorbed 4H + CO + H₂O to 4H + HCO + OH, the rate-determining step is CO hydrogenation to HCO via a barrier of 1.28 eV. The total reaction is exothermic by 0.04 eV. Compared with the clean surface, the precovered H atoms can lower the energy barrier of HCO formation (1.65 vs 1.28 eV) and make HCO formation from highly endothermic (0.88 eV) to slightly exothermic (~0.04 eV). Figure 6 shows also that CO₂ dissociation [CO₂ → CO + O] is much favorable kinetically (0.33 eV) and thermodynamically (~1.44 eV), and the formed CO can be hydrogenated [CO + H → HCO].

3.6. WGS Reaction on Different H₂O/CO Ratios.

Apart from the clean surface as well as surfaces with the precoverage of O atoms, OH groups, and H atoms, we also became interested in the WGS reaction with different H₂O and CO ratios.

In this section, we considered the WGS reaction of CO and H₂O through three routes: redox and COOH- and HCO-mediated mechanisms. The optimized structures of the stationary points of IS, TS, and FS are shown in Figure S8, and the structural parameters are listed in Table S9. The reaction barriers, the reaction energies, and the structural parameters of the TS are shown in Table S10. The total reaction potential energy surfaces are shown in Figure 7.

On the basis of the previous results and the above discussion, the first step of the reaction is H₂O dissociation into surface O and H due to the low barriers and exothermic property. Starting from the coadsorbed CO + 2H₂O, the dissociative adsorption energy of CO + 2OH + 2H is...
The coadsorption energy of 2CO + H2O is ~4.43 eV, which is only 0.07 eV higher than the total energies (~4.36 eV) of the individual adsorptions. In the coadsorption configuration, both H2O and CO are at the top sites. In the first step, we computed H2O dissociation. In the transition state TS37, the breaking O–H distance is 1.388 Å. The dissociation has a barrier of 0.91 eV and is endothermic by 0.96 eV. In the final state (2CO + OH + H), the OH and H adsorb at the T and LB sites, respectively. The coadsorbed CO can be oxidized by the formed O atom. In the transition state (TS33), the forming C–O distance is 1.651 Å. This reaction has a barrier of 1.44 eV and is endothermic by 0.92 eV. As shown in Figure 7, CO2 formation has an effective barrier of 1.93 eV and is endothermic by 1.41 eV.

For the HCO-mediated route [CO + 2OH + 2H → HCO + 2OH + H], the next step is the coupling of CO and H to form HCO. In the transition state TS34, the forming C–H distance is 1.325 Å. In this step, the barrier is 1.44 eV and the reaction is endothermic by 1.00 eV.

For the COOH-mediated mechanism [CO + 2OH + 2H → COOH + OH + 2H], the next step is the coupling of CO and OH starting from CO + 2OH + 2H. In the transition state TS35, the forming C–O distance is 1.839 Å. In this step, the barrier is 2.09 eV, and the reaction is endothermic by 1.07 eV. In addition, CO direct dissociation is also considered. In the transition state (TS36), the breaking C–O distance is 1.782 Å. This reaction needs a barrier of 1.53 eV and is exothermic by 0.49 eV.

The PES in Figure 7 shows clearly that the most favorable route is either CO dissociation or HCO formation, and both reactions have similar barriers (1.53 vs 1.44 eV); however, CO dissociation is much more favorable than HCO formation thermodynamically (~0.49 vs 1.00 eV). In contrast, the formation of COOH and CO2 is much less favorable kinetically and thermodynamically. Figure 7 shows also that CO2 dissociation [CO2 → CO + O] is much more favorable thermodynamically (0.52 eV) and thermodynamically (~0.92 eV), and the formed CO can be hydrogenated [CO + H → HCO].

3.6. H2O/CO = 1/2. In this section, we considered the WGS reaction of 2CO and H2O through three routes: redox and COOH- and HCO-mediated mechanisms. The optimized structures of the stationary points of IS, TS, and FS are shown in Figure S9, and the structural parameters are listed in Table S11. The reaction barriers, the reaction energies, and the structural parameters of the TS are shown in Table S12. The total PES is shown in Figure 8.
favorable. Therefore, the clean Fe(110) surface does not promote the WGS reaction, while CO dissociation and CO oxidation are favorable.

With the precoverage of surface O atoms at 0.25 ML, the most favorable route is HCO formation. Compared with the clean surface, the barrier of HCO formation is lowered significantly (0.67 vs 1.65 eV), while that of CO dissociation is increased considerably (2.25 vs 1.61 eV). It is noted that O precoverage can lower the barrier of COOH formation (1.83 vs 2.11 eV), while it can enhance the barrier of CO oxidation (1.75 vs 1.61 eV). Therefore, O precoverage can promote HCO formation, while it can suppress CO oxidation and dissociation.

On the surface with OH precoverage at 0.25 ML, similar results as on the O-precovered surface have been found, i.e., favoring HCO formation and suppressing CO oxidation and dissociation. The barrier of HCO formation is much lower (1.26 eV) than those of CO dissociation and oxidation (2.47 and 1.80 eV, respectively). On the surface with H precoverage at 0.25 ML, the most favorable reaction route is also HCO formation with a barrier of 1.28 eV, while the barriers of CO dissociation and oxidation are much higher (1.76 and 2.33 eV, respectively).

On the H2O-precovered surface (CO/H2O = 1/2), CO dissociation and CO hydrogenation have similar barriers (1.53 vs 1.61 eV); however, CO dissociation is exothermic (−0.49 eV), while CO hydrogenation is endothermic (1.00 eV). In contrast, COOH formation and CO oxidation are not favorable kinetically and thermodynamically. Similar results are also found on the OH-precovered surface (CO/H2O = 2/1); for example, the barriers of CO dissociation and CO hydrogenation are similar (1.51 vs 1.44 eV), and CO dissociation is exothermic (−0.45 eV), while CO hydrogenation is endothermic (0.72 eV).

Considering the back reaction, CO2 dissociation is much favorable kinetically and thermodynamically on all of these surfaces. Compared with the reaction on the clean surface, some interesting points can be seen on the precovered surfaces. For example, CO2 formation has similar barriers on O-, OH-, and H- as well as H2O-precovered surfaces. However, the reaction energies become less endothermic, and this is because of the H-bonding interaction between the adsorbed CO2 with other surface species. The same trend is also found for HCO, where the HCO formation is endothermic, while HCO dissociation becomes exothermic.

4. CONCLUSION
To understand the potential ability of the water-gas shift reaction catalyzed by metallic iron, we have carried out detailed density functional theory computation on the reactions of CO and H2O on the clean Fe(110) surface as well as on the 0.25 ML O-, OH-, and H-precovered Fe(110) surfaces. We also have considered the reactions with different CO and H2O ratios.

On all of these surfaces, H2O dissociative adsorption \([H_2O \rightarrow OH + H \rightarrow O + 2H]\) is very favorable kinetically and thermodynamically, and this is necessary for the redox reaction \([CO + O \rightarrow CO_2]\) and the carboxylic reaction \([CO + OH \rightarrow COOH \rightarrow CO_2 + H]\).

On the clean surface, CO oxidation following the redox mechanism has a similar barrier as CO dissociation; however, CO dissociation is much more favorable thermodynamically. In contrast, the formation of COOH as well as HCO and COH is neither kinetically nor thermodynamically favorable.

On the surface with O, OH, and H at 0.25 monolayer precoverage, CO hydrogenation is promoted, while CO oxidation and dissociation are suppressed.

On the surfaces with different CO and H2O ratios, CO dissociation and CO hydrogenation have similar barriers; however, CO dissociation is exothermic, while CO hydrogenation is endothermic. On all of these surfaces, COOH formation is not favorable.

Considering the reverse reactions, CO2 dissociation is much favorable kinetically and thermodynamically on all of these surfaces, and CO2 can be hydrogenated easily.

On the basis of all of these results, it is concluded that metallic iron is not an appropriate catalyst for the water-gas shift reaction; instead, hydrocarbon formation should be likely.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b07497.
Adsorption energies and bond distances of the IS, TS, and FS in the reaction of CO + H2O (Tables S1, S3, S5, S7); barriers and reaction energies of the reaction of CO + H2O, and the bond distances of the transition states (Tables S2, S4, S6, S8); adsorption energies and bond distances of the IS, TS, and FS in the reaction of CO + 2H2O (Table S9); barriers and reaction energies of the reaction of CO + 2H2O, and the bond distances of the transition states (Table S10); adsorption energies and bond distances of the IS, TS, and FS in the reaction of 2CO + H2O (Table S11); barriers and reaction energies of the reaction of 2CO + H2O, and the bond distances of the transition states (Table S12); top and side views of the optimized geometries and adsorption energies for the stationary points in the reaction of CO + H2O (Figures S1–S7); top and side views of the optimized geometries and adsorption energies for the stationary points in the reaction of CO + 2H2O (Figure S8); and top and side views of the optimized geometries and adsorption energies for the stationary points in the reaction of 2CO + H2O (Figure S9) (PDF)

AUTHOR INFORMATION
Corresponding Authors
*E-mail: ywl@sxicc.ac.cn (Y.-W.L.).
*E-mail: haijun.jiao@catalysis.de (H.J.).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This work was supported by the National Basic Research Program of China (no. 2011CB201406), the National Natural Science Foundation of China (nos. 21273262 & 21273266), and the Chinese Academy of Science and Synfuels China, Ltd. We also acknowledge general financial support from the BMBF and the state of Mecklenburg-Vorpommern.

REFERENCES

(52) Dry, M. E. The Sasol Route to Fuels. Chemtech. 1982, 12, 744−750.

(59) Behner, H.; Spiess, W.; Wedler, G.; Borgmann, D. Interaction of Carbon Dioxide with Fe(110), Stepped Fe(110) and Fe(111). Surf. Sci. 1986, 175, 276−286.

